Energy Market Insights

Valuation of Generation Assets in Illiquid Markets: The Example of Poland

by Sean Gammons & Richard Druce

Introduction
The Polish electricity market is in a state of transition. Over the last 15 years, the Polish government has gradually implemented market reforms designed to comply with European Union (EU) rules on the internal market for energy. As a result, the Polish electricity market is becoming increasingly transparent and integrated with neighbouring markets.

Despite this progress, institutional and regulatory constraints in the Polish market, in particular the lack of a liquid wholesale market and regulation of end-user tariffs, continue to create risks for investors. In this EMI, we examine how these risks affect the value of generation assets in Poland.

Our analysis has implications both for policymakers and investors in the Polish power market, especially now that the Polish government has re-launched its privatisation programme. However, the issues covered in this EMI are not unique to Poland. Many emerging power markets in the EU and elsewhere exhibit similar characteristics and create similar challenges for decision-makers.

Overview of the Polish Market
At the end of 2008, the Polish electricity market had installed generation capacity of approximately 35,000 MW, compared to a peak demand of 25,000 MW. Around 84% of installed capacity is coal-fired, accounting for over 90% of electricity production. Much of Poland’s coal-fired generation fleet is in need of either replacement or substantial modernisation investment. Around two-thirds of the country’s coal plants have been operating for over 25 years, and require costly investments in environmental mitigation equipment to comply with the EU’s Large Combustion Plants Directive, or else they must close by end-2015.

Largely driven by the need to attract modernisation investment in the sector, and more recently to reduce Poland’s budget deficit, the government has outlined plans to privatise a number of energy sector companies. However, despite some asset sales to large European utilities, particularly at the generation level, the market remains largely dominated by vertically integrated state-owned companies, the largest of which are PGE, Enea, Energa, and Tauron.

Like all EU Member States, Poland has also implemented rules to “legally unbundle” network operators from generation and supply functions, and to offer end users the opportunity to switch supplier. However, incumbents still supply the vast majority of consumers, and the regulator (URE) retains control over all residential end-user tariffs.

At the wholesale level, most trade takes place through bilateral contracts. A small share of wholesale trading (approximately 2%) takes place on the Polish Power Exchange (POLPX), which provides the only transparent wholesale reference price in the market.
Recent Wholesale Market Trends

A Structural Shift in Pricing
Until early 2008, POLPX prices were relatively stable and showed little or no correlation with the international CO₂ and coal prices that might be expected to determine the underlying marginal costs of generation in the coal-dominated Polish market, as Figure 1 illustrates.

The stability of wholesale power prices, coinciding with periods of volatile CO₂ prices within the EU Emissions Trading Scheme (EU ETS), is consistent with Polish generators not passing through the full “opportunity cost” of CO₂ before 2008.

The weak correlation between POLPX prices and international coal prices also suggests that the price of coal within Poland might not have reflected the international market prices over this period, possibly due to price regulation and government control within the Polish coal industry, among other factors.¹,²

However, a step-change in POLPX prices occurred in 2008, coinciding with the start of Phase II of the EU ETS, when the price of CO₂ emissions jumped from €0 to €20/tonne overnight. Since then, POLPX price trends show evidence of greater correlation with CO₂ prices. Figure 1 also suggests that the link between POLPX and international coal prices has strengthened.

This step-change in POLPX pricing suggests that some fundamental changes took place in the Polish electricity and/or fuel supply markets towards the end of 2008, although what exactly is not clear. We discuss some candidates below.

Figure 1 Historic POLPX vs. European Coal and CO₂ Prices

Source: NERA analysis of data from Platts Powervision, McCloskey, Point Carbon, and the European Central Bank (ECB). POLPX prices are monthly averages of day-ahead prices.

Early Termination of PPAs
After a long-running investigation by the European Commission, the Polish authorities enacted legislation in mid-2007 to phase out the long-term power purchase agreements (PPAs) that until recently covered a large share of generation in Poland.³ The last remaining agreements were terminated in April 2008.

Well designed PPAs incorporate an energy price that reflects the underlying marginal costs of the generation asset covered by the agreement, and hence accurately signal marginal costs to the market. However, it is not clear the Polish PPAs conformed to this model. For example, some may have incorporated take-or-pay clauses. They may also not have allowed the full pass-through of the opportunity cost of CO₂ (see below).

Hence, the early termination of the PPAs may help to explain the improved correlation between POLPX prices and underlying marginal costs.

CO₂ Pricing
Polish generators have been subject to the EU ETS since the start of Phase I of the scheme on 1 January 2005, and hence in theory have faced the market cost of their CO₂ emissions for some time now. However, for a variety of reasons, they may only have started to perceive a real cost to their emissions from the start of Phase II of the scheme on 1 January 2008.

First, it was not until mid-2006 that the Polish government implemented a registry system for Polish EUA certificates, thus allowing generators to trade their free CO₂ allowances.⁴ Second, tighter allowance allocations in Phase II compared to Phase I of the EU ETS⁵ may have caused a perception that Polish generators would be short of free CO₂ allowances, thus giving even state-controlled generators some incentive to recover the cost of CO₂ emissions in their prices. Third, the growing role
of private capital in the industry and the Polish government’s preparations for further sell-offs may have finally instilled greater commercial discipline, thus strengthening incentives to pass through CO\textsubscript{2} costs.12

Coal Pricing

The Polish coal industry, though “notoriously opaque” and marked by government subsidy and influence,13 has undergone gradual reforms over recent years. In particular, the government is gradually phasing out state aid to the sector, which is now monitored by the European Commission. At the same time, coal imports have grown.14 These changes, along with the introduction of greater commercial disciplines in the electricity industry, help explain the increased correlation between international coal prices and the POLPX price.

Convergence with Neighbouring Markets

As shown in Figure 3, since the start of 2008 the POLPX price has also started to show stronger correlation with the prices seen in the neighbouring German market (EEX), a system where price setting is also dominated by coal plants. This convergence signals that the same underlying factors that drive the EEX price (international coal and CO\textsubscript{2} prices and the supply-demand balance) are now driving the POLPX price. It may also reflect the creation of more transparent mechanisms for cross-border interconnector access and hence more efficient arbitrage. However, EEX prices are still notably more volatile than POLPX prices, perhaps reflecting the greater role of gas-fired generation and wind farms in the generation mix in Germany, but also perhaps a lack of full commercial discipline in Poland.

Recent Retail Market Trends

The development of the retail market in Poland has lagged behind the wholesale market, due to the continued regulation of end-user tariffs and political interference in regulatory proceedings.

In the industrial segment of the retail market, where the regulator no longer fixes tariffs, the hike in wholesale prices in 2008 appears to have fed through into higher end-user prices (see Figure 4). However, the same adjustment to end-user prices has not occurred in the household segment of the market, where the regulator still sets prices and where recent events suggest the tariff-setting process is subject to political interference.

For example, on 9 November 2007, 10 days after announcing the deregulation of end-user prices as of 2008, the president of the URE, Adam Szafranski, was dismissed. His successor, Mariusz Swora, immediately reversed this deregulation, which triggered lawsuits against his office by several parties in the industry.15 Furthermore, URE’s most recent report to the European Commission notes the lack of independence of the regulator’s office, and the political influence over the regulator’s appointment.16

It therefore appears that regulated retail tariffs are currently set below the underlying costs of serving residential consumers in Poland. This hypothesis finds further support in the latest complaints from Polish retailers that regulated residential end-user prices prevent them from recovering their costs.17

Valuation of Thermal Generators in Poland

Valuation depends on cash flow expectations, risks and the price of risk as reflected in the cost of capital. In mature markets, a combination of forward market information and fundamentals analysis provides the best guide to these drivers. However, in illiquid markets like Poland, the framework must be expanded to account for the types of market and regulatory distortions we have identified above.

Forecasts of Polish Wholesale Market Evolution

As Figure 5 shows, based on published data, Poland appears to have a reserve margin of around 30\% at present. However, much of this capacity is very old, inefficient, and dirty steam coal and lignite plants that will need to close over the coming several years. With continued demand growth—Poland has
survived the recession better than most—significant new investment will therefore be required over the next decade. Using our EESyMTM model of the European electricity market, we predict that incremental investment in new thermal baseload capacity will become economically viable in Poland from around 2015.18

EESyMTM selects new entrant technologies to minimise the overall costs of generation. In the Polish market, it selects gas-fired CCGT capacity as the cheapest baseload new entrant technology based on our forecasts of gas, coal, and CO\textsubscript{2} prices, as well as our assumptions on the construction costs and technical characteristics of alternative new build options.19

Figure 5 Forecast of the Polish Supply-Demand Balance

Based on these forecasts of the supply-demand balance, we use EESyMTM to project baseload prices,21 as shown in Figure 6. For 2009, we predict baseload prices at around €37/MWh, rising to €41/MWh in 2010.22 Thereafter, we predict a gradual convergence to the level required to remunerate new entry from around 2015, defined by the long-run marginal cost (LRMC) of a gas-fired CCGT plant.23

Figure 6 Baseload Price Forecasts

To generate four-hourly price curves, we “shape” our annual baseload price forecast (from EESyMTM) using the (normalised) observed pattern of POLPX prices in 2008.24 We also “shape” the plant’s marginal cost curve using the observed pattern of coal and CO\textsubscript{2} daily spot market prices for 2008 in order to preserve the underlying historical correlations that drive the clean dark spread.25 We then calculate a profit-maximising pattern of dispatch, assuming the plant runs whenever the clean dark spread exceeds the non-fuel variable O&M costs, after accounting for outages and start-up costs. Treating the 2008 price shape as deterministic (i.e., fixing the pattern of prices observed in 2008 throughout the modelling period),26 we find that the enterprise value of a steam coal plant varies between €215/kW and €528/kW, depending on the assumed cost of capital and thermal efficiency.27

Table 1 Coal Generator Valuation (2008 POLPX Pricing Method), €/kW28

<table>
<thead>
<tr>
<th>Thermal Efficiency (%)</th>
<th>Nominal, Pre-Tax WACC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12%</td>
<td>33%</td>
</tr>
<tr>
<td>14%</td>
<td>35%</td>
</tr>
<tr>
<td>16%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Generation Asset Valuation: Market Paradigm

Based on this forecast of baseload prices, we have used our EnergyMetricsTM platform to project patterns of dispatch, captured dark spreads, and net revenues for a coal-fired generator operating in the Polish market. EnergyMetricsTM works at a more detailed level than EESyMTM and in reverse. Instead of matching generation output against demand to predict prices, it dispatches a generator against given four-hourly spot price curves (i.e., six blocks per day) to predict its output.

Generation Asset Valuation: Increased Volatility

As we have seen, volatility on the POLPX increased from 2008 onwards, but still falls short of the volatility we see on the EEX in Germany. With the expected increase in investment in gas-fired capacity and renewable capacity in Poland, together with greater interconnection,29 and enhanced commercial disciplines, we would expect to see greater convergence over time between the POLPX and EEX markets. Reflecting this scenario, if we apply the 2008 EEX price shape to our forecast baseload prices for Poland, our valuation range increases by between 7% and 22% compared to our base case, as shown in Table 2.30

Figure 6 Baseload Price Forecasts

Source: NERA projections.21

Source: NERA Analysis.

Source: NERA projections.

Source: NERA Analysis.

Source: NERA projections.
Table 2 Coal Generator Valuation (2008 EEX Pricing Method), €/kW

<table>
<thead>
<tr>
<th>Thermal Efficiency (%)</th>
<th>12%</th>
<th>14%</th>
<th>16%</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>381</td>
<td>315</td>
<td>264</td>
</tr>
<tr>
<td>35%</td>
<td>476</td>
<td>397</td>
<td>335</td>
</tr>
<tr>
<td>37%</td>
<td>569</td>
<td>477</td>
<td>405</td>
</tr>
</tbody>
</table>

Source: NERA Analysis.

Table 3 Coal Generator Valuation (2008 POLPX Pricing Method, Less Retail Losses), €/kW

<table>
<thead>
<tr>
<th>Thermal Efficiency (%)</th>
<th>12%</th>
<th>14%</th>
<th>16%</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>155</td>
<td>121</td>
<td>95</td>
</tr>
<tr>
<td>35%</td>
<td>240</td>
<td>193</td>
<td>157</td>
</tr>
<tr>
<td>37%</td>
<td>332</td>
<td>272</td>
<td>225</td>
</tr>
</tbody>
</table>

Source: NERA Analysis.

Generation Asset Valuation: Regulated Scenario

The above scenarios reflect some of the risks around the development of the wholesale market in Poland, but they assume there is sufficient liquidity for generators to be able sell all their output at the POLPX price. In practice, as we have discussed, liquidity is currently very low and hence it is not clear that the POLPX price represents a reliable reference price for valuation.

In addition, most generation assets are owned by vertically integrated groups that are exposed to regulated end-user tariffs that are set below the true cost of serving residential retail customers. The resulting economic losses must show up in the form of reduced valuations for vertically integrated groups in Poland, whether the losses are allocated to the retail business, as they probably should be, or the generation business, on the basis that the POLPX does not represent a reliable reference price.

On 1 December 2008, the Polish regulator made an assessment that the “fair value” wholesale power price for calendar year 2009 was Zloty 155/MWh, which compares to Platts’ Polish year-ahead assessment (made two days later) of Zloty 225/MWh. The difference between these two forecasts places the regulator’s view of power prices 36% below the level implied by independent assessment.

As an illustration of the impact retail losses may have on valuation, suppose that the regulator applied this discount to the wholesale purchase component of regulated residential tariffs. Assuming residential sales represent 20% of a vertically integrated company’s sales, this 36% loss would equate to a 7% loss on all retail power sales. Allocating this loss to a generation business throughout the period 2009-2028 would reduce valuations compared to our base case by up to 50%, as shown in Table 3.

Conclusions

The structural shift in pricing dynamics on the POLPX seen in early 2008 has increased the transparency of wholesale prices in Poland. Nevertheless, the continuing lack of wholesale market liquidity complicates the task of valuing generation assets in this market, as we have illustrated in this paper.

Unless further reforms are enacted, this situation will undoubtedly hinder the government’s efforts to attract private capital into the industry and limit the price the government achieves for its assets at privatisation.

However, Poland is not the only market in Europe where illiquidity and price regulation complicate assessment. These conditions also prevail in most other EU accession countries, as well as certain western European markets. In all such environments, the application of standard valuation approaches must be adjusted to reflect specific local factors and risks, as this short description of the Polish electricity market has illustrated.

Contributors

Sean Gammons is an Associate Director in NERA’s Energy Team
Tel: +44 207 659 8564
Email: sean.gammons@nera.com

Richard Druce is a Consultant in NERA’s Energy Team
Tel: +44 207 659 8540
Email: richard.druce@nera.com
EndNotes

3. The LCPO places restrictions on emissions of sulphur dioxide (SO2), oxides of nitrogen (NOx), and dust (particulate matter) from combustion plants with a capacity above 50 MW (thermal). In practice, the directive requires large coal-fired generators to invest in flue gas desulphurisation, or else close by the end of 2015.

9. Historically, the Polish electricity market has been covered by a large number of long-term Power Purchase Agreements (PPAs), which, according to the European Commission, covered about half of the Polish power generation market in 2005. The PPAs were signed between 1994 and 1998, when the Polish government wanted to attract capital investment to modernise its infrastructure.

12. In theory, profit maximising firms have an incentive to pass through the market price of their CO2 emissions into their sales price. In contrast, state-owned generators may not face the incentive to make a profit, and for political reasons may be reluctant to pass through CO2 prices to their customers. However, if state-owned generators need to incur cash costs to buy allowances on the market to make good on a shortfall in their allocation, then even they would eventually need to increase the prices they charge to customers.

14. Data from Eurostat shows that coal imports to Poland grew by 39% between 2003 and 2007.

18. “Incremental” here means additional investment over and above those projects that are already under construction, which we treat as firm commitments and hence are already factored into our base line assumptions.

19. According to our assumptions, new CCGT plants are slightly cheaper than new coal plants in the Polish market in terms of the average costs for baseload generation, and for this reason our EnergyMetrics model prefers to build CCGT plants instead of coal. In reality, investors may choose to construct a diversified generation portfolio to hedge against fuel and CO2 price fluctuations and short-term fuel supply constraints—certainly, we see a mix of coal and gas projects being developed right now in Poland.

20. Current capacity information from Platts Powervision; Peak demand projections from local Polish sources. Note: Hydro, wind and renewables capacity is adjusted for expected availability at time of system peak. The match between peak demand and installed capacity suggests that Poland will become increasingly reliant on imports to meet peak demand (mainly from the Nordic and Baltic markets where we assume the marginal costs of generation are lower in the long-run).

21. An annual “baseload” price is the arithmetic, unweighted average of power prices across all hours of the year. In Europe, “baseload contracts” for various terms are one of the most liquid instruments traded on forward markets, and hence a standard metric for reporting price forecasts.

22. We use a 22 June 2009 “information date” to define our modelling assumptions on generation capacity, fuel and CO2 prices, exchange rates and inflation. (The “information date” is the cut-off date we use to define our assumptions, i.e., we only take account of information available at that date.) Our 2010 price forecast is close to 2010 forward power prices from around the same time as our information date: Platts’ Polish Price Assessment for 2 July 2009 was €44.80/MWh for calendar year 2010.

23. We calculate the LRMC of a gas-fired CCGT plant as the sum of the fuel, CO2, and variable O&M costs of the plant ($/MWh), plus a margin to recover the annualised fixed costs of operation.

24. The price in each four-hour block of our modelling period is defined as follows: Price(0) = Price(2008) / Baseload Price (2008) * Forecast Baseload Price (j), where i denotes a four-hour block (i=1,…,2190) and j denotes a year (j=2009,…,2028).

25. We shape Polish coal prices using ARA API#2 coal prices from 2008 reported by Bloomberg, and CO2 prices using 2008 EU ETS prices reported by Point Carbon.

26. EnergyMetrics™ can treat power, fuel, and CO2 prices as deterministic variables, i.e., their “shape” over each year is predefined, or as stochastic variables, i.e., their “shape” over the year is subject to random variation. This latter functionality allows us to calculate the full option value of power plants, contracts, etc.

27. We calculate enterprise values on a discounted cash flow (DCF) basis over the period 2009-2028 (i.e., assuming a 20-year remaining life with zero terminal value). The valuations are net of fixed operating and maintenance costs, which we assumed to be US$27.53/MWhannum based on Energy Information Administration: Annual Energy Outlook 2009, and assume no incremental capex, whether for environmental compliance or life-extension. The WACCs we have used are for illustration only.

28. Thermal efficiencies in this table and elsewhere are on a high heating value (HHV) sent-out (i.e. net) basis.

29. Vattenfall-TSO and PSE Operator, the Polish grid company, recently announced plans to build a new 1,000 MW link between their two systems. Source: PSE Operator press release, 23 September 2009.

30. Using EEX price shape (volatility) results in bigger and more frequent power price spikes than with POLPX shape. Although the increase in price spikes is offset by lower prices in off-peak periods (with the same average price over the year as a whole), coal plants can avoid these lower prices by switching off in off-peak periods. Hence, using EEX price shape results in an increase in expected cash flows for coal plants in Poland, which we assume translates into higher value. This increase in value would be smaller if investors applied a higher discount rate to the more volatile cash flows under the EEX price shape scenario, but we have no evidence that investors are likely to react in this way.

NERA Economic Consulting (www.nera.com) is a global firm of experts dedicated to applying economic, finance, and quantitative principles to complex business and legal challenges. For nearly half a century, NERA’s economists have been creating strategies, studies, reports, expert testimony, and policy recommendations for government authorities and the world’s leading law firms and corporations. We bring academic rigor, objectivity, and real world industry experience to bear on issues arising from competition, regulation, public policy, strategy, finance, and litigation.

NERA’s clients value our ability to apply and communicate state-of-the-art approaches clearly and convincingly, our commitment to deliver unbiased findings, and our reputation for quality and independence. Our clients rely on the integrity and skills of our unparalleled team of economists and other experts backed by the resources and reliability of one of the world’s largest economic consultancies. With its main office in New York City, NERA serves clients from over 20 offices across North America, Europe, and Asia Pacific.

Our Services

Energy Market Insights showcases insightful quantitative analysis from NERA’s top energy experts on critical issues affecting electricity and natural gas markets around the globe. Other examples of recent energy market studies we have completed include:

- Creating prototype commodity and asset valuation models for a large European utility (jointly with our sister company Oliver Wyman)
- A review of wholesale electricity markets and renewable investment incentives in Eastern Europe
- Assessment of the impact of vesting contracts in the Singaporean power market, including game theoretical modelling of competitive dynamics

For more information on our capabilities in these and other related areas, please visit our website at www.nera.com.

The views in this issue are those of the authors and not necessarily those of NERA Economic Consulting.

© Copyright 2009 National Economic Research Associates, Inc. All rights reserved. Printed in the UK.